Dans cet article, nous décrirons la conception du châssis de R.Hasika, un robot pensé pour être robuste, précis et autonome, présenté dans ce précédent billet, et dont voici la page de projet. Le châssis du robot est un élément important, puisqu’il lui conférera sa solidité, mais aussi une partie de ses capacités finales. En pratique, un bon châssis permettra un robot précis, du fait du positionnement exact des composants. Le châssis de R.Hasika présenté dans ce billet est un châssis monocoque, en une seule pièce, fait pour être construit à l’imprimante 3D. Détaillons maintenant sa conception et les fonctionnalités qu’il apporte.
You are browsing archives for
Étiquette : lithium
R.Hasika – présentation : un robot Raspberry pi précis et extensible
R.Hasika – présentation
R.Hasika est le successeur de R.Cerda, un robot basé sur le Raspberry pi. Si à l’époque mon objectif était simplement de construire un robot basé sur le Raspberry pi, avec R.hasika, je suis plus ambitieux. En effet, il s’agit cette fois de concevoir entièrement le robot, que tout soit correctement pensé, plutôt que de faire certains éléments comme le châssis avec ce qui est disponible sous la main. Cette fois ci, chaque élément du robot aura été pensé. Dans ce billet, je vous propose une rapide présentation de ce robot et de ses objectifs.
J’ai créé une page pour le projet R.Hasika, que je vous invite à consulter pour davantage de détails.
Motorisation et déplacement
R.Hasika est un robot à conduite différentielle, s’appuyant sur deux moteurs à courant continu. Ces moteurs sont dotés de capteurs de rotation qui permettront un déplacement précis. Ils sont contrôlés par une puce DRV8835, qui permet de les commander facilement en PWM avec seulement 4 GPIO.
Ces moteurs entraînent deux chenilles, mais on peut les remplacer par des roues si on le souhaite. Dans tous les cas, ce choix de propulsion en fait un rover agile, capable de tourner sur lui même sur place, et avec une bonne capacité de franchissement d’obstacles.
Grâce aux capteurs de rotation des moteurs, on sera capable d’ajuster la vitesse de ceux ci pour effectuer des trajectoires parfaitement rectilignes, des rotations d’un angle précis, et même de l’odométrie et ainsi cartographier une zone.
Châssis et éléments structurels
Par rapport à R.Cerda, cette fois, le châssis à été pensé à l’avance. En pratique, la conception a été faite entièrement avec le logiciel libre OpenScad, et le code source (libre) permet à tout un chacun de modifier les paramètres du robot pour l’ajuster à ses besoins. J’ai publié un article détaillé sur le châssis de R.Hasika sur ce blog, comportant plus de détails que la présentation que vous lisez en ce moment.
Le châssis a été pensé pour être fabriqué à l’imprimante 3D d’une seule pièce, avec tous les trous et emplacements de fixation requis pour l’assemblage d’un robot complet. Ce châssis comporte également l’emplacement des batteries, des moteurs, des roues libres et de la plaque de support de l’électronique.
Cette dernière justement est la seconde pièce, sur laquelle viennent se fixer les composants électroniques du robot, les capteurs, etc. Cette plaque se visse simplement sur le châssis, renforçant ainsi davantage sa solidité.
La troisième pièce est la carrosserie, qui vient se visser par dessus, et qui permet de protéger l’électronique, et sert de support à divers autres éléments (voir plus bas dans la section du même nom).
Alimentation électrique et autonomie
L’alimentation électrique se fait par le biais de batteries lithium (jusqu’à 4), qui fournissent une capacité de 50Wh, permettant ainsi au robot de dépasser les 24 heures d’autonomie hors déplacement. En déplacement on obtiendra facilement de nombreuses heures d’autonomie.
Un autre point intéressant avec ces batteries est qu’elles permettent d’intégrer au robot un circuit de charge, permettant de le recharger sans retirer les batteries. Mieux, on peut recharger le robot sans l’éteindre. Encore mieux, cela nous permet de programmer le robot pour qu’il aille se charger seul sur une station dédiée.
Capteurs
Les capteurs de base embarqués sont deux microswitches à levier, qui servent de capteurs de contact, un capteur de distance à ultrasons maxbotix, et les capteurs de rotation des roues. Si ces derniers permettent des trajectoires et mouvements précis, les deux premiers servent à mettre en oeuvre des algorithmes d’évitement d’obstacles.
D’autres capteurs viendront probablement s’ajouter à ces capteurs, avec par exemple un module accéléromètre, boussole et gyroscope 3D.
Un capteur particulier prendra place à coup sur, en revanche, avec le module caméra du Raspberry pi. Celui ci permet une capture vidéo en fullHD (1920*1080) à 30 images par secondes et des photos à 5Mpixels, voire 8 pour la nouvelle version. Une version infrarouge existe également.
Electronique de commande
Pour l’électronique de commande de ce robot, on s’appuie tout d’abord sur un Arduino nano, chargé des tâches de bas niveau (commande des moteurs, lecture des capteurs, contrôle des LEDs et boutons, etc). Le robot peut être programmé directement via le Arduino, en ignorant le reste.
Mais cet Arduino est connecté par un port série à un Raspberry pi A+, qui permet cette fois de s’intéresser à des tâches plus complexes, telle que la cartographie, le traitement d’information vidéo, les communications wifi, etc. Si on ne souhaite pas s’occuper de la programmation des tâches de bas niveau, il suffit de téléverser le code fourni avec le projet sur l’Arduino et de communiquer avec celui ci depuis le Raspberry pi via un port série pour envoyer des commandes.
Autres éléments
R.Hasika embarque divers autres éléments que nous ne détaillerons pas tous ici. Mais en voici quelques uns :
- 6 leds RGB adressables, dont on peut définir indépendamment la couleur parmi 65536;
- un bouton poussoir programmable par l’utilisateur;
- du wifi embarqué, pour pouvoir commander ou programmer le robot à distance;
- un écran LCD 2*16 pour afficher des informations textuelles;
- une ouverture permettant au robot d’être modifié, adapté;
- des emplacements pour fixer des extensions non planifiées pour le moment.
Dans les prochains billets, nous nous pencherons en détail sur tous ces aspects, et nous nous intéresserons également aux objectifs recherchés pour ce robot, en commençant par détailler la conception du châssis et les fonctionnalités par celui ci. En attendant, voici une galerie de R.hasika :
REA – energie, alimentation électrique : batteries pour rover
Dans le cadre du programme REA, nous développons un rover. Nous avons tout d’abord décidé du mode de déplacement du robot, avant de nous pencher sur le type de moteurs à utiliser, puis au choix des roues ou chenilles pour la propulsion. Pour que notre rover soit autonome, il nous faut une source d’énergie, et comme nous avons opté pour des moteurs électriques, il nous faut une alimentation électrique pour l’ensemble. Voyons cette problématique en nous penchant principalement sur les batteries pour rover.
Raspberry pi mobile LiPo, test d’autonomie au repos, monitoring batterie
Aujourd’hui, voyons comment s’en sort notre raspberry pi équipé de sa batterie LiPo de 6000mAh. Dans ce précédent billet, j’ai décrit le système de base du Raspberry pi mobile, et dans celui ci j’ai rajouté un composant pour mesurer la tension de la batterie. Le premier test effectué nous a permis d’atteindre environ 42 heures d’autonomie, au repos. Cette fois ci, nous reproduisons ce test, mais en mesurant la tension de la batterie durant ce test. Nous étudierons la courbe pour déterminer une relation entre la tension et la charge restante.
Raspberry pi mobile LiPo : un système autonome et rechargeable à bonne autonomie
Le Raspberry pi est un ordinateur compact et économe en énergie. Il est donc logiquement une solution intéressante pour des projets embarqués. Je vais donc présenter ici un montage permettant de faire un Raspberry pi portable avec une batterie rechargeable Lithium Polymère, et un chargeur efficace. L’objectif final sera d’avoir un système qu’on puisse utiliser indifféremment sur secteur ou sur batterie, sans interruption, comme avec un ordinateur portable classique.
R.Eikki : Construction du mini robot basse consommation
R.Eikki est un robot pensé pour être économe en énergie et donc avoir une grande autonomie.
Les robots peuvent être plus ou moins gros, complexes, voir puissants. Mais pour ce projet, nous nous intéressons à l’autonomie. L’objectif du prototype R.Eikki est de concevoir un robot ayant la plus grande autonomie possible, tout en restant compact. On ne cherchera donc pas à mettre des tonnes de batteries, mais plutôt pour un matériel donné, à optimiser la consommation au maximum pour en tirer la plus longue durée de fonctionnement possible sur une charge de batterie.
j’ai discuté ce sujet en profondeur sur le forum robot-maker. Cliquez ci dessous pour voir la galerie sur ce robot.