Skip to main content

BME280 sur Raspberry pi : température, pression et humidité en I2C

bme280 de l'arrière (côté opposé au capteur)

Le BME280 est le successeur du BMP185 et du BMP85. Ce composant permet de mesurer la température, la pression atmosphérique et l’hygrométrie (taux d’humidité dans l’air). La communication avec ce composant passe par l’omniprésent et très pratique bus I2C. Nous verrons ici comment utiliser le BME280 sur Raspberry pi.

En savoir plus

Les écrans LCD texte et leur conversion I2C

vignette vidéo écrans LCD texte et conversion I2C

J’ai fait une nouvelle vidéo sur ma chaine youtube, sur les écrans LCD texte classiques, à base de HD44780 (ceux qu’on trouve partout), et sur leur conversion en écrans I2C en utilisant une carte additionnelle qui permet de passer de 6-8 GPIOs occupés à 2 (qui restent utilisables en plus!).

Plus d’explications dans la vidéo :

DS3231 Raspberry pi RTC : ajouter une horloge temps réel I2C – Alitest

DS3231 Raspberry pi RTC - pinout

Le Raspberry pi ne dispose pas de module RTC (Real Time Clock, horloge en temps réel), et ne peut donc pas garder une trace précise du temps écoulé sans avoir recours à une synchronisation sur un serveur de temps (NTP). Cela n’est pas toujours possible, notamment pour des projets ou le Raspberry Pi n’est pas connecté au réseau. Pour remédier à cela, il est possible d’ajouter un module RTC tel que le DS3231, économique, compact et précis. Nous verrons dans ce tutoriel comment réaliser cela.

En savoir plus

Configuration de l’I2C sur un Raspberry Pi

raspi-config/advanced options/i2c

Nouveau tutoriel : Configuration de l’I2C sur un Raspberry Pi.

Le bus I2C (ou I²C), pour Inter Integrated Circuit, a été développé en 1982 par Philips et permet de connecter divers équipements électroniques entre eux. Il dispose d’un système d’adressage permettant de connecter de nombreux périphériques I2C sur les mêmes câbles, ce qui signifie ici que l’on utilisera un nombre restreint de GPIO, quel que soit le nombre de périphériques I2C installés. Dans le contexte du Raspberry Pi, ce bus est très utile, puisqu’il permet de rajouter diverses fonctionnalités. On trouvera par exemple des puces pour ajouter des GPIO, des horloges temps réel, des capteurs, et bien d’autres composants en I2C. Par défaut, l’I2C n’est pas forcément activé, et nous verrons comment faire cela.

Pour lire la suite du tutoriel, suivez ce lien :

http://nagashur.com/wiki/doku.php?id=raspberry_pi:i2c_setup

Ajouter des GPIO au Raspberry Pi en utilisant une puce MCP23017 ou 23008

puce MCP23017, crédits photo Adafruit
Puce MCP23017

Puce MCP23017

Si le nombre de GPIO disponibles sur le Raspberry Pi ne vous convient pas, pas d’inquiétude, il est possible d’en rajouter. La puce MCP23017 permet d’ajouter 16 GPIO , et la puce MCP23008 permet d’en rajouter 8. Dans les deux cas, ces puces se connectent au Raspberry Pi sur des GPIO “spéciaux”, dédiés au protocole I²C. Ce qui est formidable, c’est que même ainsi, vos broches I²C restent disponibles, grâce à un système d’adressage.
Il est ainsi possible de connecter d’autres puces sur les broches I²C en chaînant celles ci avec notre MCP23017 ou MCP23008. Pour cela, on utilisera un système d’adressage que nous verrons plus tard.
Ces deux puces coûtent 2$ pour le MCP23008, et 3$ pour le MCP23017. A moins d’avoir des contraintes d’espace (le MCP23008 se présente sous forme d’une puce à 16 broches, en 2*8, alors que la MCP23017 est une puce à 28 broches, en 2*14) sur votre montage, autant prendre des MCP23017. 🙂

En savoir plus